4. Banch Spaces.

A Banach Space is a vector space X with a norm ||z|| satisfying ||cx|| = |c|||z| for real or
complex scalars ¢ and ||z 4+ y|| < ||z|| + [|y||- In addition X is complete under the metric

d(z,y) = ||z -yl

Examples. L,,¢, for 1 < p < co. C(X) the space of continuous functions on a compact
space X, or C’b( ) the space of bounded continuous functions on X. The norms being
L[ 1f(z)|Pdp]» |% or > |an|P]7 for 1 < p < co. On L it is the essential supremum and
on { it is sup,, |a,| with || f|| = sup, | f(z)| on the space of bounded continuous functions.

Linear Functions. They are linear maps A : X — R or X — (. Bounded or continuous
linear functionals are those that satisfy |A(z)| < Cllz||. With [[A[| = supy,<; [A(z) as
norm the set of linear functionals is a Banach space called the dual X*. For p > 1 the dual
of L, is L, where ¢ = z% with ¢ = oo when p = 1. But the dual of L., is bigger than
L;. The second dual is [X*]* and contains X. but could be bigger. If it is the same X is
said to be reflexive. For 1 < p < 00, L, is reflexive while L; and ¢; are not unless they are

finite dimensional.

Linear Operators. They are linear maps {7 : X — Y} that are continuous or bounded
if |T'z[| < C||z|| and such operators form a Banach space with norm ||T| = sup, < HT:(:||
If {Tl X — Y} and {T2 Y — Z} then {T2T1 X — Z} with ||T2T1|| < ||T2||||T1H
{T:X = Y} then {T* : Y* — X*} and ||T7|| = |T||. (T2Th)" = 17Ty .

Baire category theorem. If X is complete metric space and X = U352, C} is a countable
union of closed sets, then at least one C; must have a nonempty 1nter10r i.e. C; contains
an open ball S(z,€) around some point for some € > 0.

Proof. Let C7, Cs be two closed sets such that their union C;UC5 has a nonempty interior.
Then at least one of them must have an interior. To see this, let x € Cy and S(x,d) be
not a subset of C; U Cy. There is then 2’ € S(z,d) N C{ and consequently S(z’,d") C Cf
for some ¢’ > 0. Since S(z’,¢") C (C1 U C2) N Cf it must be contained in Cs.

Let X = U32,C;. If X = UJ_,C; for some finite n we are done (by induction on n).
We can find nested balls S(x;,d;) | with §; — 0. z; is a Cauchy sequence with a limit
z € N;S(zj,65). = ¢ Ul C; implying z ¢ X = U2, Cj.

Open mapping theorem. Let T be a bounded map fro X onto Y. Then the image T'S
of the unit ball S in X has nonempty interior. Equivalently the image of any open set is
open. Or the image of the init ball {z : ||z| < 1} in X contains a ball {y : ||y|| < &} of
some positive radius in Y. If T is a bounded one to one and onto map from X onto Y,
then 7! is bounded.

Proof. Since T is onto U2 TB(0;k) = Y. By Baire category theorem for some ko,
TB(0, ko) then contains an open set B(yo,d) around some xg. Set of points of the form
T(x1 — x2) with z1, 29 from S(0, ko) will then contain a Ball of radius 20 around 0. Any
point y € Y with ||y|| < 24 is arbitrarily close to Tx for some x in B(0, 2ky). By scaling
any point in B(0,a) in Y is arbitrarily close to a point in the image of B(0, Qa) where
0 = koo™, Let y € B(0,1) C Y. Find z; € B(0,0) such that ||y — Tz1|| < 3, Then if
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n=y—Tzy, [|y1]] < % We can find xy with ||xs]| < g such that ||y; — Txs|| = ||ly2|| < i.
Proceeding we have
y=Tx1+Tra+ - +Txy, +yn

with ||z, | < 627D, Now x =Y =, exists ||z|| < 20 and Tz =y. The map T is open.

Uniform Boundedness Principle. Let {T,} are bounded linear maps from Banach
space X to Banach space Y such that sup,, ||Thz|| = C(z) < oo for every x € X. Then
C(z) < C||x|| for some constant C, i.e. sup, ||T|| < oo

Proof. Let C,, = {z : C(x) < n}. C, is closed and U,C,, = X. Some C), has interior.
There is a an open ball S(zg, J) contained in some Cj, and Cay will contain S(0, 26). Since
C(rz) = rC(z) for r > 0, it follows that C(z) < £|z|.

Closed Graph Theorem. If T" maps X — Y the graph of T is the linear set of points
(x,Tx) € X x Y as x varies over X. The closed graph theorem says that if the graph of
T is a closed subspace of X x Y then T is necessarily bonded.

Proof. Let Z = X&Y and M = {(z,Tz)} the graph of T is a closed subspace of Z. Then
X can have a new norm ||z| + ||7'z|| under which it is again a Banach space. To check
completeness means proving that if x,, and T'z,, are both Cauchy then the limit is (x,y)
with y = Tz. This is precisely the graph being closed in X @ Y. The map (z,Tx) — x is
clearly, bounded, one to one and onto. The inverse x — (z,Tz) is also then bounded.

Hahn-Banach Theorem. Given a linear functional A(z) from a closed subspace Y C X
satisfying |A(z)| < p(z) where p, defined on X, satisfies p > 0,p(ax) = |a|p(z) and
p(x+vy) < p(x)+p(y), p can extended from Y to X satisfying |A(z)| < p(x) for all z € X.

Proof. Take 2o ¢ Y. Let us define A(z + cxg) = A(x) + ca for some a € R. Need to pick
a such that A(z) + ca < p(z + cxg) for all z € Y and ¢ € R.

sup A(x) — p(z — cxo) <a<inf p(x + cxg) — A(x)

>0 C c>0 C

For this to be possible we need for ¢1,c0 > 0,2 €Y,

A(x) — p(x — c120) < p(x + cazp) — A(x)

C1 C2

ca[A(x) — p(z — c120)] < c1[p(x + caxo) — Ax)]
c1p(T + cao) + c2(x — c120)

A <
(ZC) - c1+ Co

follows from sub-additivity and homogeneity of p.
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Problem 4.1 Let x4, ..., x4 be d linearly independent vectors in a Banach space X and V'
their linear span. Show that V' is a closed subspace of X and there exists a complementary
closed subspace Y C X such that X =Y @& V. In any other decomposition of X =Y & W
the dimension of W must be d.

A subspace M (not assumed to be closed) is of finite co-dimension d in a Banach space
X if it is spanned by M and a finite number d of lvectors x1,...,x4 that are linearly
independent modulo M.

Theorem. A subspace of finite co-dimension is necessarily closed and the co-dimension d
is well defined. There is a complementary subspace V' of dimension d such that X = M@V

Proof. The quotient space X/M =V is a vector space and its dimension d is well defined.
Any z € X can be written as a unique sum x = y-i—Zf:l Ai(z)x; withye M. X=MaV
with V being the span of {z1,...,24}. The graph of the map = — {A;(z)} of X — R? is
closed. It is then bounded and M = N¥_,{z : A;(x) = 0} is closed.



